

Machine learning reduces the amount of necessary maximum voluntary isometric contractions tests of the shoulder muscles

Romain Martinez*, Jonathan Tremblay, Mickael Begon, Fabien Dal Maso

World Congress of Biomechanics 2018, Dublin

We spend to much time preparing experiments

We spend to much time doing MVICs

What is MVIC?

Maximum Voluntary Isometric Contraction (*MVIC*)
Test used to normalize an electromyographic signal

ElectroMyoGraphie (*EMG*)
Give an estimate of muscle activation

Warning

EMG ≠ muscle activation—but a *particular* voltage measured

Normalization

Required to reduce inter-individual variability

What is *MVIC?*

Problem

No MVIC allows maximum contraction for a set of muscles

Shoulder complex

Boettcher et al., 2008

Combination of *4 tests* to normalize *12 muscles*

Unrepresentative

Dal Maso et al., 2016

Combination of *12 tests* to normalize *12 muscles*

Objective

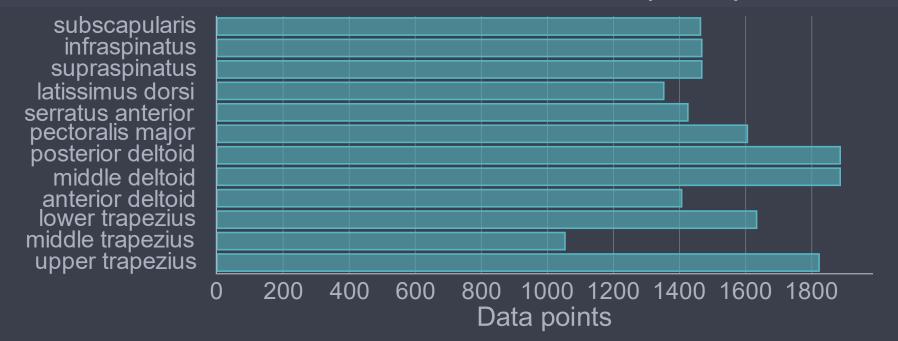
Boettcher et al., 2008

Combination of *4 tests* to normalize *12 muscles*

Dal Maso et al., 2016

Combination of 12 tests to normalize 12 muscles

Predictive approach



Data collected

18,465 data points

 \approx 12 shoulder muscles $\times \approx$ 16 MVICs \times 184 participants

Data processing

1. Raw data

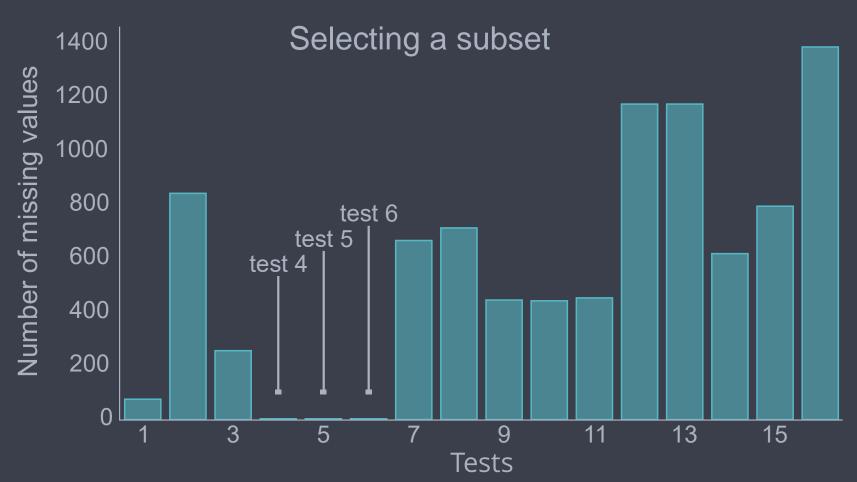
Muscle	Participant	Test 1	Test 2	Test 3	 Test 16
1	1	0.127825	0.124255	0.146927	 nan
2	1	0.179864	0.294909	0.295846	 0.199097
3	1	0.078753	0.106490	nan	 0.272709
12	184	0.150353	0.104654	0.115272	 0.150641

Data processing

2. Normalization based on test # 2

Muscle	Participant	Test 1	Test 2	Test 3	 Test 16
1	1	72	100	130	 nan
2	1	64	100	91	 37
3	1	76	100	nan	 168
12	184	105	100	57	 110

Data processing


3. Compute maximum of each row

Muscle	Participant	Test 1	Test 2	Test 3	 Test 16	Max.
1	1	72	100	130	 nan	130
2	1	64	100	91	 37	100
3	1	76	100	nan	 168	168
12	184	105	100	57	 110	110

Data processing

4. Predict the maximum based on a subset of tests

		Inputs		Output		
Muscle	Participant	Test 1	Test 2	Test 3		Max.
1	1	72	100	130		130
2	1	64	100	91	Prediction	100
3	1	76	100	nan		168
12	184	105	100	57		110

MVIC 3

MVIC 7

MartinezBoettcherDal Maso

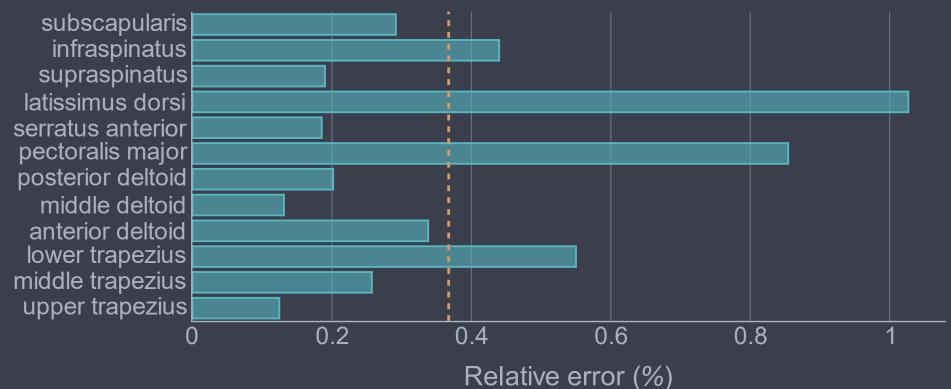
Model evaluation

Training - test sets

To make sure that the model will generalize well

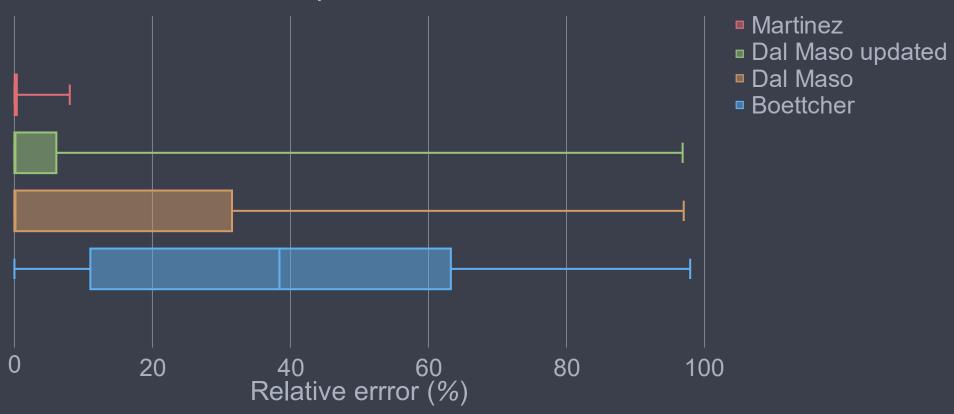
80%	20%
Training	Test

Non-parametric T-tests on relative error

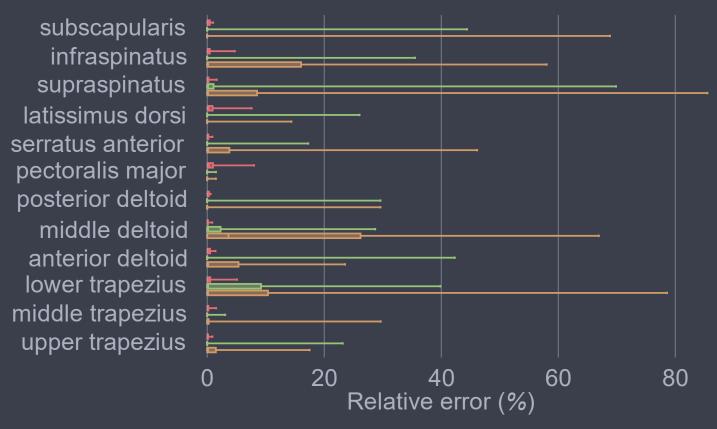

$$\left\| \frac{\text{real} - \text{prediction}}{\text{real}} \right\| \times 100$$

4 methods: Martinez, Boettcher, Dal Maso, Dal Maso updated

Results


Model performance

Average = 0.37%


Results

Comparison with other methods

Results

Comparison with other methods

- Martinez
- Dal Maso updated
- Dal Maso
- Boettcher

Discussion

Reducing time – increasing performance

Reducing Time

5 minutes (3 tests) vs. 22 minutes (12 tests)

Increasing performance

Small relative error (0.37%)

Method	Relative error (%)	Execution time (min)
Boettcher	40.30	6.67
Dal Maso	20.00	22
Dal Maso updated	9.36	22
Martinez	0.37	4.7

Discussion

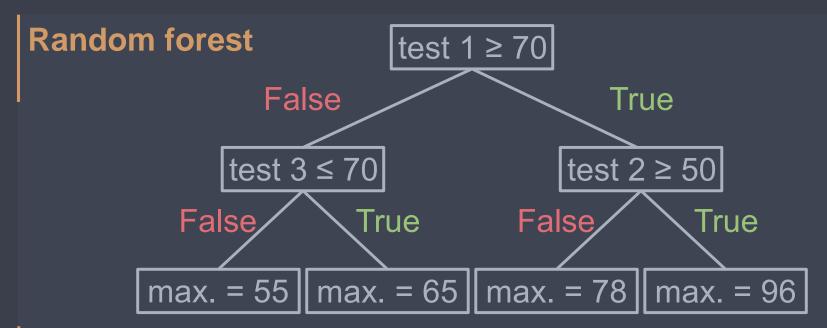
Practical application

Usage

Pre-trained model available for the community

- 1. Download the model from github.com/romainmartinez/mvc
- 2. Install Python and the Scikit-learn library
- 3. Make a prediction from your data

```
from sklearn.externals import joblib
x = joblib.load('my_data.pkl')
model = joblib.load('model.pkl')
prediction = model.predict(x)
```

Machine learning reduces the amount of necessary maximum voluntary isometric contractions tests of the shoulder muscles

Romain Martinez*, Jonathan Tremblay, Mickael Begon, Fabien Dal Maso

World Congress of Biomechanics 2018, Dublin

Choosing a model

« Wisdom of the crowds »

Averaging a large number of novices is better than one expert